HTTP API: Get Fine-Tune Status
You can monitor the status and progress of a specific fine-tune job via the HTTP API. EndpointGET /v1/fine_tunes/{fine_tune_id}
fine_tune_id– Unique identifier of the fine-tune job you want to monitor.
Authorization– Bearer token used to authenticate the request (for exampleBearer $API_KEY).Content-Type– Must be set toapplication/json.
status(string) – Overall request status (for example"success").status_message(string) – Human-readable description of the status.fine_tune(object) – Details about the fine-tune job.
fine_tune object contains (non-exhaustive):
id(string) – Fine-tune job ID.name(string) – Human-readable name for the fine-tune run.status(string) – Current status (for example"pending","running","completed","failed").base_model(string) – Identifier of the base model (for example"Qwen/Qwen3-0.6B").repository_id(string) – ID of the repository the dataset/model belong to.resource(object) – Input dataset reference:path(string) – Path to the dataset inside the repo.version(string) – Dataset version or commit hash.
training_params(object) – Training configuration used for this fine-tune, including:question_column(string) – Dataset column used as the prompt/input.answer_column(string) – Dataset column used as the target/label.batch_size(integer) – Batch size.epochs(integer) – Number of epochs.learning_rate(number) – Learning rate.seq_length(integer) – Maximum sequence length.use_lora(boolean) – Whether LoRA fine-tuning is enabled.
gpu_count(integer) – Number of GPUs used.gpu_model(string) – GPU type (for example"A10G").total_token_count(integer) – Total number of tokens processed so far.created_by(object) – User who created the fine-tune (ID, username, name, etc.).source_model(object) – Metadata about the source/base model (ID, name, slug, capabilities, pricing, etc.).inserted_at(string, ISO 8601) – Time the job was created.started_at(string, ISO 8601 | null) – Time the job started running.finished_at(string, ISO 8601 | null) – Time the job finished (if completed/failed).updated_at(string, ISO 8601) – Last time the job metadata was updated.
queue_position, rate_per_second, use_lora, and model pricing/infra metadata may also be present and can be used for advanced monitoring or billing.